Kservistorg.ru

Все о бытовой технике
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Мощный линейный источник питания на полевых транзисторах (13В, 20А)

Принципиальная схема мощного источника питания на полевых транзисторах, напряжение 13В при токах до 20А и выше

Рис. 1. Принципиальная схема мощного источника питания на полевых транзисторах, напряжение 13В при токах до 20А и выше.

На диодах Д1-Д4 и конденсаторах C2-C3 собран выпрямитель напряжения.

На компонентах DA1, Д7, R8-R9 собран узел стабилизации напряжения. Напряжение стабилизации задается сопротивлением резистора R9.

На транзисторе VT5 собрана защита по току от короткого замыкания на выходе.

Выходные транзисторы VT1-VT4 работают в линейном режиме.

Схема стабилизации напряжения собрана на U1.3 и U1.4. На U1.4 собран дифференциальный каскад, усиливающий напряжение делителя обратной связи, образованного резисторами R14 и R15. Усиленный сигнал поступает на компаратор U1.3, сравнивающий выходное напряжение с образцовым, сформированным стабилизатором U2 и потенциометром RV2. Полученная разница напряжений поступает на транзистор Q2, управляющий регулирующим элементом Q1. Ограничение тока осуществляется компаратором U1.1, который сравнивает падение напряжения на шунте R16 с опорным, сформированным потенциометром RV1. При превышении заданного порога, U1.1 изменяет опорное напряжение для компаратора U1.3, что приводит к пропорциональному изменению выходного напряжения. На операционном усилителе U1.2 собран узел индикации режима работы устройства. При понижении напряжения на выходе U1.1 ниже напряжения сформированного делителем R2 и R3, светится светодиод D1, сигнализирующий о переходе схемы в режим стабилизации тока. В случае работы устройства от питающего напряжения ниже 23В, стабилитрон D3 необходимо заменить перемычкой. Так же, возможно питать слаботочную часть схемы от отдельного источника, подав напряжение 9-35 В непосредственно на вход стабилизатора U3 и удалив стабилитрон D3.

Детали для УНИВЕРСАЛЬНОГО БЛОКА ПИТАНИЯ

Плата для сборки СХЕМЫ УНИВЕРСАЛЬНОГО БЛОКА ПИТАНИЯ

плата от БП

После распаковки посылки меня сразу насторожило то, что отсутствует стабилитрон и некоторые резисторы — такое впечатление что этот комплект собирали кое как. Ничего, пусть будет, я думал что на этом все сюрпризы закончились, но как я ошибался: во время пайки дорожи улетали, паяльная маска была везде, должен был проходить наждачной бумагой зачищая контакты после чего их заново залуживал, пайка продолжалась несмотря ни на что, припаял основные резисторы это 1К и 10К, ну а дальше пошел на поиски недостающих резисторов. Нашел и запаял, после чего взялся за транзисторы — здесь было все нормально.

Источник питания из радиолюбительского набора - пайка

Источник питания из радиолюбительского набора - детали

Блок питания из набора с регулируемым напряжением

Что было интересно — это инструкция или схема по которой нужно собирать радио конструктор, первое что бросается в глаза это то, какой здесь разброс номиналов резисторов. Сама печатная плата разведена неграмотно, переменные резисторы на плате прикасаются друг к другу, при выключении схемы из сети идет скачок до 30 вольт и медленно падает. Чтоб это исправить припаял конденсатор к 8 и 11 ноге микросхемы — этот глюк проявляется при малых загрузках.

Сборка УНИВЕРСАЛЬНОГО БЛОКА ПИТАНИЯ

Плата и регуляторы УНИВЕРСАЛЬНОГО БЛОКА ПИТАНИЯ

 УНИВЕРСАЛЬНЫЙ БЛОК ПИТАНИЯ

Вообще схема по параметрам реально неплохая, поэтому развел свою печатною плату. Может кто-то захочет повторить конструкцию. Печатная плата и список деталей в архиве. Благодарю за внимание, с вами был Kalyan-super-bos.

Читайте так же:
Регулировка яркости mac mini

Форум по обсуждению материала СХЕМА УНИВЕРСАЛЬНОГО БЛОКА ПИТАНИЯ

Самодельный 8-канальный PWM MOSFET LED Chaser на микроконтроллере 16F628A.

Обсудим действующие стандарты радиосвязи, узнаем чем они отличаются, и когда использовать какие из них.

Медицинские устройства для контроля параметров здоровья человека. Примеры современных микросхем снятия и обработки сигналов тела.

Источник постоянного тока (CC) из понижающего регулятора напряжения (CV). Доработка готового модуля.

Стабилизатор на К142ЕН5 — с регулируемым выходным напряжением

В заметке С. Савина «Вариант включения стабилизатора К142ЕН5», опубликованной в «Радио» 1989, № 12, с, 66, речь шла о том, что если вывод 8 этой микросхемы подключить к общему проводу через стабилитрон, то напряжение на выходе стабилизатора увеличится на напряжение стабилизации включенного стабилитрона. Подобный совет повторил А. Гвоздак в статье «Доработка радиоконструктора «Юниор-1», помещенной в «Радио» № 6, с. 81—83 за 1991 г. Опыт показывает, что подборкой соответствующего стабилитрона можно в необходимой мере повысить выходное напряжение стабилизатора, но оно, как и при традиционном включении стабилизатора К142ВН5, фиксированное. Вместе с тем читатели нашего журнала сообщают, что аналогичный способ включения микросхемных стабилизаторов К142ЕН5 позволяет получить на выходе стабилизатора повышенное регулируемое напряжение. Об этом, в частности, рассказывают в своих письмах радиолюбители А. Чумаков из г. Йошкар-Ола и А. Черкасов из Караганды.

СТАБИЛИЗИРОВАННЫЙ БЛОК ПИТАНИЯ

Устройство и работа полевого транзистора

Особенности полевых структур

Полевой транзистор, как регулируемый элемент схемы управления, может быть представлен в виде полупроводниковой структуры, состоящей из двух близко расположенных p-n переходов. Все эти электрические каналы связываются общим электрическим полем (смотрите рисунок).

Структура и принцип действия полевого транзистора

Структура и принцип действия полевого транзистора

За счёт такого устройства полупроводникового элемента управление им осуществляется не током (как в биполярных транзисторах), а напряжением, подаваемым между затвором и стоком.

Важно! Электростатический принцип управления примечателен тем, что входной ток через затвор микроскопически мал (обычно он не превышает нескольких микроампер).

Вследствие данной особенности полевых структур они практически не расходуют мощности, то есть очень экономичны в смысле энергопотребления. Благодаря этому вся управляющая схема отличается мизерным расходом энергии, обеспечивая, тем не менее, достаточную эффективность регулировки выходного тока.

Принцип управления переходом

Из приведённой выше схемы можно сделать вывод, что у полевого транзистора имеется три рабочих электрода. Каждый из них выполняет свою функцию и имеет общепринятые обозначения, переводимые на русский язык как затвор, исток и сток. Эти наименования соответствуют привычным для многих аббревиатурным обозначениям БЭК (база, коллектор и эмиттер), имеющим непосредственное отношение к обычному биполярному транзистору.

Подобно этому хорошо знакомому элементу в полевых структурах управляющий потенциал подаётся между затвором и стоком, а управляемый более мощный сигнал снимется с нагрузки, включённой в цепь истока.

В отличие от существующих импульсных схем, в которых используется ключевой режим работы, в данном случае транзистор осуществляет непрерывную регулировку сигнала, корректируя выходной ток в нагрузке в соответствии с параметрами обратной связи (ООС).

Читайте так же:
Регулировка алюминиевых окон для лоджии

Ещё вариант сборки блока питания

Поскольку до этого паял обычным сетевым паяльником, заодно решил построить паяльную станцию.

На боковой стороне корпуса розетка для подключения паяльника, выключатель, позволяющий использовать только станцию или блок питания. Есть также два разъёма, в которые можно подключить мультиметр и в любое время считывать температуру с термопары. Файлы проекта в архиве.

Полевые транзисторы в стабилизаторах тока

В идеальном примере источник питания обеспечивает стабильность тока, если электрическое сопротивление цепи нагрузки меняется от нуля (КЗ) до бесконечности. Однако в действительности рабочие параметры проводимости (напряжения) ограничены определенным диапазоном. Схема на полевом транзисторе с последовательным подключением к зарядному устройству, солнечной батарее или другому «реальному» источнику обеспечит поддержание тока в линии на заданном уровне.

Самодельный блок питания на MOSFET транзисторе

Самодельный блок питания на MOSFET транзистореВ предыдущей статье мы рассматривали схемы ЗУ с использованием в качестве силового ключа мощные p-n-p или n-p-n транзисторы. Они позволяли получить достаточно большой ток при небольшом количестве радиодеталей, но у используемых биполярных транзисторов имеется существенный недостаток…

— это большое падение напряжения коллектор-эмиттер в режиме насыщения, достигающее 2 … 2,5 В у составных транзисторов, что приводит к их повышенному нагреву и необходимости установки транзисторов на большой радиатор.

Гораздо экономичней вместо биполярных транзисторов устанавливать силовые МОП (MOSFET) транзисторы, которые при тех же токах имеют гораздо меньшее (в 5 -10 раз) падение напряжения на открытом переходе сток-исток. Проще всего вместо силового p-n-p транзистора установить мощный p-канальный полевой транзистор, ограничив с помощью дополнительного стабилитрона напряжение между истоком и затвором на уровне 15В. Параллельно стабилитрону подключается резистор сопротивлением около 1 кОм для быстрой разрядки ёмкости затвор-исток.

Гораздо более распространены и доступней силовые n- канальные МОП транзисторы, но принципиальная схема устройства с такими транзисторами несколько усложняется, т.к. для полного открытия канала сток-исток на затвор необходимо подать напряжение на 15 В выше напряжения силовой части. Ниже рассмотрена схема такого устройства.

Мощный лабораторный блок питания 1,5 -30В, 0-5А на MOSFET транзисторе

Основа конструкции мало отличается от ранее рассмотренных устройств на биполярных силовых транзисторах. С помощью конденсаторов С1-С3 и диодов VD1-VD5 в схеме формируется повышенное на 15 В напряжение, которое с помощью транзисторов VT2, VT3 подаётся на затвор полевого транзистора VT1.

Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

В схеме желательно использовать MOSFET с наиболее низким сопротивлением открытого канала, но максимальное допустимое напряжение этих транзисторов должно быть в 1,5 — 2 раза выше напряжения силовой цепи. В качестве диода VD8 желательно использовать диоды с барьером Шоттки с рабочим напряжением выше максимального в силовой цепи, в крайнем случае можно использовать КД213А или КД2997, КД2799, но их придётся установить на небольшой радиатор. Требования к изготовлению накопительного дросселя DR1 такие же как и в зарядных устройствах с биполярными ключевыми транзисторами.

Читайте так же:
Как отрегулировать элеватор отопления

При отсутствии подходящего проволочного резистора, используемого в качестве токового шунта R17 схему можно доработать, используя небольшой отрезок манганинового провода диаметром 2 мм или мощные проволочные резисторы сопротивлением 0,01 …0,05 Ом.

Следующая схема имеет нормализацию напряжения на токовом шунте и усилителя на ОУ.

Лабораторный блок питания с усилителем-нормализатором напряжения шунта

Предлагаемая схема отличается от описанной, выше наличием операционного усилителя DA2, что позволяет можно использовать как любой проволочный резистор сопротивлением 0,01 … 0,05 Ом и мощностью 1 — 2 Вт, так и кусок подходящего нихромового или манганинового провода диаметром 1,5 … 2 мм.

Операционный усилитель усиливает напряжение шунта до уровня, необходимого для нормальной работы компаратора микросхемы DA1. Коэффициент усиления ОУ DA2 определяется соотношением сопротивлений резисторов R15 и R18 и определяется из условия получения на выходе ОУ напряжения 0,5 … 3 В при выбранном максимальном выходном токе устройства.

Выходной ток регулируется переменным резистором R4, максимальное напряжение на движке которого должно быть равно напряжению на выходе ОУ DA2 при максимальном рабочем токе. Сопротивление переменного резистора R4 может быть любым в пределах 1 … 100 К, а максимальное напряжение на его движке определяется сопротивлением резистора R6.

Схема позволяет получить гораздо больший выходной ток, чем выбранный автором — максимальная величина тока определяется мощностью силового трансформатора, элементами силовой цепи и настройкой узла ограничения выходного тока. В качестве DA2 может быть использован практически любой доступный операционный усилитель, например КР140УД1408, КР140УД608, КР140УД708, mA741 и т.д.

Конденсатор частотной коррекции C9 может отсутствовать при использовании ОУ, не требующих его использования. В случае использования ОУ типа КР140УД1408 (LM308) его припаивают между выводами 1 и 8, у других ОУ выводы могут быть иными.

Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

Лабораторный блок питания отличается от ранее описанного зарядного устройства гораздо большим максимальным выходным напряжением. Автором выбрано напряжение 30В, но если использовать трансформатор с большим выходным напряжением и применить более высоковольтные силовые элементы, можно получить гораздо более высокие значения.

Регулировка выходного напряжения осуществляется переменным резистором R16, сопротивление которого может быть в пределах 3,3 … 100кОм. Верхний предел выходного напряжения определяется сопротивлением резистора R17 из расчёта получения напряжения 1,5 В на движке переменного резистора R16 в его нижнем, по схеме, положении.

Схему можно упростить, исключив регуляторы тока и напряжения, а также измерительную головку, если устройство будет использоваться только для зарядки одного типа аккумуляторов. Вместо переменного резистора — регулятора выходного напряжения на печатной плате установлен многооборотный подстроечный резистор R15, а ограничение выходного тока задаётся делителем на резисторах R4, R5.

Для исключения выхода из строя диода VD11 при случайной переполюсовке аккумулятора установлен предохранитель FU2. В качестве транзисторов VT2, VT3 можно использовать любые маломощные транзисторы соответствующей структуры на напряжение 60В и ток коллектора 100мА, например КТ209Е, КТ3102Б и т.д.

Читайте так же:
Регулировка напряжения блока питания at в регулируемый блок питания

Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

В авторском варианте схема настраивалась на выходной ток 3,0 А, но его легко повысить до 6А и более, уменьшив номинал резистора R13 до 5,0 кОм.

Внешний вид платы и расположение элементов:

Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

Предложенная схема лабораторного блока питания можно дополнить узлом защиты нагрузки от неконтролируемого повышения выходного напряжения, например, при пробое выходного транзистора или неисправности в схеме. Смотрите следующую схему:

ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

Предлагаемый лабораторный блок питания отличается от схемы, выше наличием узла защиты нагрузки от повышенного напряжения. При включении блока питания напряжение на его выходе отсутствует, что исключает случайный выход из строя подключенной нагрузки из-за начального несоответствия установленного напряжения и требуемого. Узел ручного включения / отключения нагрузки собран на транзисторах VT5, VT7 и реле K1.

Узел работает следующим образом: в исходном состоянии транзисторы VT5, VT7 заперты и реле К1 обесточено. При кратковременном нажатии на кнопку SB1 высокий потенциал на коллекторе VT7 через резистор R30 и конденсатор С11 открывает VT7 — реле К1 срабатывает, а протекающий через резистор R33 ток катушки реле открывает транзистор VT5, который через резистор R26 удерживает транзистор VT7 в открытом состоянии длительное время. На лицевой панели блока питания зажигается светодиод HL3 «НАГРУЗКА», а контакты реле К1 коммутируют выходное напряжение на выходные клеммы.

В этом состоянии на коллекторе транзистора VT7 низкий потенциал, а на коллекторе VT5 высокий. Конденсатор C10 через резистор R19 заряжается до напряжения 35В, плюсом к нижней, по схеме, обкладке и минусом к базе транзистора VT7. При повторном нажатии кнопки SB1 через резистор R30 и конденсатор С10 к базе VT7 прикладывается отрицательное напряжение — транзистор запирается, отключается реле К1, снимая напряжение с нагрузки, запирается транзистор VT5 и схема приходит в исходное состояние до следующего нажатия кнопки SB1.

Защита от нештатного повышения выходного напряжения работает следующим образом: при нормальном режиме работы напряжение на движке переменного резистора R20 всегда будет равно 1,5 В, независимо от его положения, так как схема управления на микросхеме DA1 сравнивает его с опорным на выводе 15, которое определяется параметрами делителя напряжения на резисторах R13 и R8. При неисправности в схеме это напряжение может превысить уровень 1,5 В, транзистор VT4 через резисторный делитель R15, R16 откроется, а транзистор VT7 закроется, отключив выходное реле К1. При длительной аварийной ситуации будет гореть светодиод HL2 «АВАРИЯ», а реле К1 кнопкой SB1 включаться не будет.

Защита также сработает при быстром вращении оси переменного резистора R20 в сторону уменьшения выходного напряжения, что позволяет быстро отключить нагрузку, если случайно было установлено его недопустимо высокое значение.

Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

Схема также защищает элементы устройства от протекания большого тока при переполюсовке заряжаемого аккумулятора. Если аккумулятор ошибочно подключен минусовым выводом к плюсовой клемме блока питания, то через диод VD15 и резистор R31 откроется транзистор VT6, загорится светодиод HL2 «АВАРИЯ», а реле К1 не будет включаться кнопкой SB1, что предотвращает выход из строя контактов реле К1, конденсатора С9, катушки дросселя DR1 и диода DV10.

Читайте так же:
Синхронизация в интернете это что такое

Очень важно вначале подключить заряжаемый аккумулятор, а затем нажать кнопку «ПУСК» для начала зарядки, в противном случае, при переполюсовке аккумулятора, перегорит предохранитель FU2.

Перед нажатием кнопки «ПУСК» движком переменного резистора R20 следует установить выходное напряжение блока питания равным его значению при полностью заряженном аккумуляторе, например, для свинцового 12В аккумулятора следует установить 14,8В. Если напряжение на выходе блока питания установить ниже, чем напряжение заряжаемого аккумулятора, то, сразу после пуска, реле К1 обесточится, отключив нагрузку, а светодиод HL2 «АВАРИЯ» кратковременно загорится.

Настройка схемы управления описана на предыдущей странице, а конструктивное исполнение накопительного дросселя приведено в предыдущих публикациях раздела зарядных устройств. Транзистор VT1 и диоды VD7, VD10 следует установить на небольшие радиаторы, площадь которых зависит от выбранного максимального рабочего тока.

Параметры силового трансформатора полностью определяются максимальными значениями выходного тока и напряжения — его мощность должна быть не менее, чем на 20% выше максимальной выходной мощности блока питания на нагрузке.

Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

Почти все элементы схемы размещены на печатной плате, внешний вид которой изображен на рисунке. Отдельно установлен силовой трансформатор, измерительный прибор, выключатель питания, регуляторы тока и напряжения, кнопка пуска, предохранители, выходные клеммы и светодиодные индикаторы. На плате предусмотрена установка различных типов диодов в качестве VD10, даже двойных.

Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

Все предложенные схемы можно использовать также и в качестве зарядных устройств.

Собираем БП

Выбранная нами схема достаточно проста и при этом надежна. Поэтому с ней сможет справиться даже новичок в радиоэлектронике.

Обратите внимание! По этой схеме выходное напряжение БП будет плавно меняться в диапазоне от 0,5 до 12 В. Оно будет оставаться стабильным даже в случае изменения напряжения в сети или тока нагрузки.

Схема блока питания

Процесс сборки

Первый этап сборки

Сборка проводится следующим образом:

  • вначале берем трансформатор. Для этой схемы вам понадобится трансформатор с напряжением в 13-17 В и током до 0,5 А;
  • после него должен идти выпрямительный мост, собранный из диодов Д229. Можно использовать готовую диодную сборку (КЦ405);
  • на выходе с диодного моста устанавливаем полярный конденсатор с большой емкостью. Он понизит пульсацию выпрямленного напряжения;

Процесс сборки

Промежуточный этап сборки

Результат сборки

Для более удобного контроля напряжения можно использовать вольтметр.
Следуя приведенной выше схеме, вы без проблем сделаете своими руками регулируемый блок питания с использованием транзисторов. При этом самодельный прибор будет качественным и прослужит вам долго.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector