Схемы простых генераторов импульсов
Простейший генератор импульсов (мультивибратор) может быть получен из двух-каскадного УНЧ (рис. 1). Для этого достаточно соединить вход усилителя с его выходом.
Рис. 1. Простейший генератор импульсов — мультивибратор, схема.
Рабочая частота такого генератора определяется значениями R1C1, R3C2 и напряжением питания.
Базовые схемы
Для построения генератора за основу взята схема автогенератора на двух логических инверторах (рисунок 1). Принцип её работы основан на периодической перезарядке конденсатора. Момент переключения состояния схемы определяется степенью заряда конденсатора C1. Процесс перезаряда происходит через резистор R1. Чем больше ёмкость C1 и сопротивление R1, тем дольше происходит процесс заряда конденсатора, и тем больше длительность периодов переключения состояния схемы. И наоборот.
Для построения схемы генераторов в качестве логических элементов была взята микросхема с четырьмя элементами 2И-НЕ – HEF4011BP. Базовая схема, показанная выше, позволяет получать на выходе Q прямоугольный сигнал фиксированной частоты и скважности 50% (меандр). Для расширения возможностей устройства было принято решение объединить в нём три различных схемы, реализуемых на тех же двух логических инверторах.
Схема генератора меандра
Схема генератора меандра изображена на рисунке 2-а. Времязадающая ёмкость схемы может изменяться от значения C1 до суммарного значения C1 и ёмкости, подключаемой перемычкой П. Это позволяет изменять диапазон частот генерируемого сигнала.
Резистор R1 позволяет плавно изменять ток заряда (перезаряда) ёмкости. Резистор R2 является токоограничивающим, для исключения перегрузки выходного канала логического элемента DD1.1 в случае, когда ползунок резистора R2 находится в крайнем верхнем положение и его сопротивление приближено к нулю. Поскольку заряд и перезаряд конденсатора производится по одной цепочке с неизменными параметрами, длительности импульса и паузы между ними равны. Такой сигнал имеет симметричную прямоугольную форму и называется меандр. Регулировкой R1 изменяется только частота генерируемого сигнала в определённом диапазоне, заданном времязадающей ёмкостью.
Схема генератора прямоугольных импульсов с раздельной регулировкой длительности импульса и паузы
На рисунке 2-б цепь заряда и цепь перезаряда разделены диодами VD1 и VD2. Если импульс формируется во время заряда времязадающей ёмкости, его длительность характеризуется сопротивлением цепочки VD1-R2-R1. Длительность паузы между импульсами при обратном перезаряде ёмкости характеризуется сопротивлением цепи R1-R3-VD2. Так, изменяя положение ползунков резисторов R2 и R3 можно плавно раздельно задавать длительность импульса и паузы между ними.
Диапазон частот генерируемого сигнала, как и в первом случае, переключается перемычкой П.
Схема генератора с ШИМ
Схема на рисунке 2-в имеет аналогичное разделение цепей прямого и обратного заряда времязадающей ёмкости с той разницей, что переменные сопротивления являются плечами переменного резистора R2, которые имеют обратную зависимость параметров по отношению друг к другу. Т.е., при увеличении одного плеча резистора прямопропорционально уменьшается второе, а общая сума их сопротивлений постоянна. Таким образом, регулируя соотношение плеч резистора R2 можно плавно изменять соотношение длительности импульсов к длительности пауз между ими, а время периода следования импульсов будет оставаться неизменным. Этот способ регулировки позволяет реализовать функцию широтно- импульсной модуляции (ШИМ)
Частота генерируемого сигнала в данной схеме выбирается дискретно переключением перемычки П. При необходимости можно использовать несколько перемычек П для суммирования больших и малых значений ёмкостей, добиваясь более точной требуемой частоты генерации сигнала внутри всего диапазона.
Для расчета номиналов резистора и конденсатора мультивибратора в зависимости от заданной частоты импульсов написал маленькую программу. Программа написана в бесплатной среде программирования Lazarus 2.2.0
Радиокнопками Type1 и Type2 вы можете выбрать первый или второй вариант схемы генератора.
В Поле F= задаем нужную частоту в килогерцах (можно использовать дробные значения.
В полях R= и C= можно задать желаемое сопротивление резистора в килоомах или емкость конденсатора в пикофарадах.
поле Vdd позволяет выбрать напряжение питания мультивибратора. От этого напряжения в некоторой степени зависит частот на выходе схемы. Можно выбрать напряжение от 5 до 15 вольт с шагом в 1В.
Что будет вычислено в итоге, зависит от того, какую кнопку вы нажмете. Если нажать Calculate C то будет вычислена емкость конденсатора. Если нажать Calculate R то программа посчитает сопротивление резистора. Результат вычисления будет подсвечен зеленым цветом до следующего ввода нового значения.
В мультивибраторе по этим схемам не рекомендуется использовать резистор сопротивлением менее 10 кОм. Расчет с помощью программы приблизительный и ориентировочный. Программа позволяет вам выбрать примерные отправные значения емкости и сопротивления. Подгонять частоту нужно в реальном устройстве точным подбором сопротивления резистора или емкости конденсатора.
- Генератор звука. В схеме гирлянды заменить группу светодиодов на пьезодинамик. Увеличить частоту звука, например, до 100 Гц. Если поднять частоту до 15 кГц, то можно будет отпугивать комаров!
- Железнодорожный светофор. Подключить к таймеру два светодиода таким образом, чтобы один соединялся с таймером катодом, а второй анодом. Установить частоту импульсов — 1 Гц.
Как уже говорилось, таймер 555 — очень популярная микросхема. Это объясняется тем, что большинству электронных устройств свойственны периодические процессы. Любой звук — это периодический процесс. ШИМ сигнал, управляющий скоростью двигателя — тоже периодический, причем с изменяющимся коэффициентом заполнения. И как уже говорилось, работа любого микроконтроллера и процессора основана на тактовом сигнале, имеющем очень точную частоту.
На следующем уроке мы сделаем бинарные часы с помощью таймера и двоичного счетчика. Будет немного сложнее, но интереснее!