Kservistorg.ru

Все о бытовой технике
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как работает регулировка pwm у вентиляторов

Как работает регулировка pwm у вентиляторов

Непонимание работы ШИМ или PWM ( Pulse-width modulation ) часто приводит не только к их неправильному использованию, но даже к ошибкам в проектировании устройств использующих ШИМ для управления. Здесь, ограничившись конкретным применением, я попытаюсь рассказать что такое ШИМ, для чего она требуется и как работает.

Сначала, что такое ШИМ.
Широтно-импульсная модуляция (ШИМ, англ. Pulse-width modulation (PWM)) — управление средним значением напряжения на нагрузке путём изменения скважности импульсов, управляющих ключом.
Когда нужна ШИМ

Главной причиной применения ШИМ является необходимость обеспечить пониженным постоянным напряжением силовых устройств электроники при сохранении высокого КПД, особенно в управляемых электроприводах.

Во внутренних сетях аппаратуры для питания устройств используется постоянное напряжение ограниченного набора напряжений, которые часто требуется изменить под требования конкретного устройства, стабилизировать или регулировать его. Это могут быть электроприводы постоянного тока, чипы, узлы радиоаппаратуры.

Регулировку можно осуществлять с помощью гасящих напряжение устройств: резисторов, транзисторов (если требуется регулировка). Главный недостаток такого решения потери мощности и повышенное тепловыделение на регулирующих устройствах.

Поскольку известно что выделяемая мощность равна :

P = I x U или P = I 2 x R Вт.

то чем больше ток I в цепи и падение напряжения U , тем больше потери мощности. Здесь R — величина сопротивления регулирующего элемента.

Представьте что требуется погасить хотя бы 3 V при токе нагрузки 10 A , это уже 30 Вт истраченных в пустую. А каждый ватт теряемой мощности не только снижает продолжительность работы источников питания, но и требует дополнительного оборудования для вывода выделяемого, этой мощностью, тепла.

Это относится к гасящим резисторам и полупроводниковым приборам тоже.

Но хорошо известно, что полупроводниковые приборы очень хорошо (с малыми потерями и тепловыделением) работают как ключи, когда имеют только два состояния открыт/закрыт.

Этот режим позволяет снизить потери на коммутирующем полупроводниковом приборе до уровня:

U нас для современных полупроводниковых коммутаторов приближается к 0,3 v и при потребляемых токах 10 А потери мощности будут приближаться к 3 Вт. Это в режиме ключа, а при работе в устройствах ШИМ и меньше.

Читайте так же:
Установка и регулировка жалюзи на пластиковые окна
В ШИМ в качестве ключевых элементов использует полупроводниковые приборы в ключевом режиме, то есть транзистор всё время или разомкнут (выключен), или замкнут (находится в состоянии насыщения).
В первом случае транзистор имеет почти бесконечное сопротивление, поэтому ток в цепи весьма мал, и, хотя всё напряжение питания падает на транзисторе, выделяемая на транзисторе мощность практически равна нулю.
Во втором случае сопротивление транзистора крайне мало, и, следовательно, падение напряжения на нём близко к нулю — выделяемая мощность также мала.
В переходных состояниях (переход ключа из проводящего состояния в непроводящее и обратно) мощность выделяемая в ключе значительна, но так как длительность переходных состояний крайне мала, по отношению к периоду модуляции, то средняя мощность потерь на переключение оказывается незначительной.

Реализовать преимущества ключевого режима в схемах понижающих и регулирующих напряжение постоянного тока, позволило использование ШИМ.

Повторюсь, широтно-импульсная модуляция — управление средним значением напряжения на интегрирующей нагрузке путём изменения скважности импульсов, с помощью управляющего ключа.

Работа ШИМ на интегрирующую нагрузку показана на рис. 1.

Главным условиям такого применения ШИМ является наличие интегрирующей нагрузки.

Потому что амплитудное значение напряжения равно E .

Это могут быть интегрирующая RC, LC, RLC или RL цепи и механические интеграторы (например электромотор).

При работе ШИМ на интегрирующей нагрузке напряжение — эквивалентное постоянное напряжение изменяется в зависимости от скважности ( Q ) импульсов.

здесь: Q — скважность, t и — длительность импульса, T — период следования импульсов.

С учетом скважности эквивалентное постоянное напряжение будет равно:

E экв = Q x E Вольт

здесь: E экв — эквивалентное постоянное напряжение ( Вольт ), Q — скважность, E — напряжение источника от которого запитан ШИМ преобразователь ( Вольт ).

Реально на зажимы нагрузки ШИМ подается напряжение равное E , а работа совершаемая электрическим током (или число оборотов электродвигателя) определяется именно E экв . При восстановлении на интегрирующем конденсаторе получаем именно напряжение E экв.

Мощность выделяемая на управляющем ключе, управляемом ШИМ равна:

Схема подключения нагрузки к ШИМ.

Никаких отличных от схемы включения электродвигателя на постоянном токе (частный случай нагрузки) схемных решений ШИМ не требует. Просто электродвичатель подключается к источнику питания работающего в режиме ШИМ. Разве что, в определенных ситуациях требуется ввести дополнительную фильтрацию помех возникающих на фронтах импульсов. Этот фильтр на рис. 2 в виде конденсаторов и демпфирующего диода.

Читайте так же:
Прервалась синхронизация в айтюнс

На рис. 2 показано такое подключение.

Мы видим, что коммутатор (полевой транзистор) можно просто заменить на переменный резистор.

Схема PWM

В статье "Переходник для вентилятора 3 pin на 4 pin" http://de1fer.ru/?p=45#more-45 владелец блога приводит схему вентилятора с P WM .

здесь: GND — земля (общий), Control — контакт P WM управления, +12 — напряжение питания, Sense — вывод датчика оборотов.

В данной схеме управление возможно скорее постоянным током +I упр, чем ШИМ сигналом.

Для управления импульсным (ШИМ) сигналом требуется схема изображенная на рис. 4. Да и судя по параметрам транзистора "PWM" он выбирался именно для управления постоянным током. По крайней мере он будет нормально работать в таком режиме с вентилятором до 1,6 Вт.

А вот в импульсном режиме без конденсатора C , транзистор BC879 будет греться немного меньше чем на постоянном токе и возможен останов электродвигателя на малых длительностях токового импульса (малых оборотах) из-за его интегрирования на входной емкости C вх транзистора.

Основные параметры кремниевого биполярного высокочастотного n-p-n транзистора BC879 от SIEMENS

Pc maxUcb maxUce maxUeb maxIc maxTj max, °CFt max
800mW100V80V5V1A150°C200MHz

В случае необходимости отключить PWM (ШИМ) управление в схеме показанной на рис. 3 необходимо просто соединить вывод Control с проводом +12v .

Есть другой вариант схемы вентилятора с P WM на форуме Radeon.ru

Существенных отличий от рис. 3 нет, только в качестве управляемого ШИМ ключа используется МОП полевой транзистор со встроенным или индуцированным каналом p- типа. Данная схема тоже может управляться как P WM так и постоянным напряжением (но рисковать не стоит — надо знать параметры транзистора).

Данная схема вполне работоспособна и не имеет недостатков схемы показанной на рис. 3.

Читайте так же:
Как регулировать браслеты для часов casio

Для отключения (в зависимости от типа транзистора) достаточно соединить вывод Control с проводом + или -.

Вниманию самодельщиков!

Я бы не рекомендовал применение вентиляторов имеющих встроенный PWM (4- pin ) одновременно с какими либо иным регуляторам оборотов вентилятора.

В случае если Вас не устраивает алгоритм управления PWM встроенного на материнскую (системную) плату.

И у Вас есть устраивающий Вас реобас (контроллер управления вентилятором), то используйте вентилятор с 3-pin соединитель.

Если вентилятор с PWM вам дорог или не имеет замены — то необходимо отключить PWM , способом описанным выше, заменив соединитель 4-pin на 3-pin и подключить к реобасу.

Но помните применение вентилятора с PWM в любом нештатном режиме не позволит достичь его максимальной производительности.

Применение одновременно с PWM — токового управления на постоянном токе не рекомендуется по причине снижение напряжения питания вентилятора на 10-20%, что не даст вывести такой вентилятор на полную производительность.

Применение одновременно с PWM — ШИМ по цепи питания может привести к периодической нестабильности работы вентилятора (возможно возникновение скользящих биений между частотами PWM — ШИМ по цепи питания систем) и создать неоднозначность для систем оснащенных системой стабилизации оборотов. Кроме того как и в предыдущем случае на 10-15% снизится результирующее напряжение на вентиляторе, что не даст вывести такой вентилятор на полную производительность.

Так что остановитесь на чем-то одном. Или используйте вентилятор с PWM , или применяйте внешнее управление вентилятором по цепи питания на вентиляторе с 3-pin разъемом.

Заключение

Применение PWM или ,как привыкли говорить мы, ШИМ повышает КПД понижающих напряжение устройств постоянного тока, что снижает общее тепловыделение электронных устройств с ШИМ.

ШИМ позволяет создавать компактные системы регулируемого электропривода постоянного тока большой мощности.

В современных устройствах постоянного тока управляющих напряжением и понижающих стабилизаторах напряжениях обычно регулировки выполняются с помощью ШИМ. Для этого выпускаются контроллеры требующие минимум навесных элементов.

Читайте так же:
Как регулировать поток воды в бачке унитаза

Технические характеристики

  • Модель: P12 PWM PST A-RGB 0dB;
  • Размеры: 120×120×25 мм;
  • Вес одного вентилятора: 131 г;
  • Скорость вращения: 0-2000 об/мин;
  • Контроль вращения: ШИМ;
  • Статическое давление: до 1,85 мм H2O;
  • Воздушный поток: до 48,8 CFM/82,91 м3/ч;
  • Подшипник: гидродинамический (FDB);
  • Кабель: 40 + 8 см;
  • Коннекторы: 4-пин PWM + 3-пин +5В RGB;
  • Гарантия: 6 лет;
  • Рекомендуемая цена комплекта: €39.99.

Практика выбора безопасных разветвителей для вентиляторов

Итак, разберемся с типичным представителем потенциальных «убийц» материнских плат. На картинке представлен крайне «плохой» разветвитель для вентиляторов, судя по всему китайского производства. «Плохим» данное изделие делает то, что такой разветвитель дает возможность подключить сразу 5 вентиляторов к одному разъему 4-pin. Вполне возможно, что если эти вентиляторы будут работать на минимальных оборотах и все они будут являться крайне слабыми, то большого вреда данный продукт не принесет вашей материнской плате. Но если вы подключите в разветвитель 5 мощнейших вентиляторов и заставите их работать на максимальных оборотах, то у вас будут все шансы довольно быстро отправить и без того бюджетную материнскую плату на тот свет, так как, уверяю вас, сила тока составит гораздо больше 1 ампера.

Убедительная просьба: остерегайтесь подобных решений и не повторяйте данных экспериментов с дешевыми разветвителями.

Теперь, когда читатель достаточно «напуган» подобными решениями, нам предстоит выбрать безопасные и достойные разветвители для того, чтобы наладить эффективную циркуляцию воздуха внутри корпуса даже с компактной и бюджетной материнской платой без большого числа разъемов для подключения вентиляторов.

Относительно неплохим решением будет использовать что-то вроде Y-разветвителя, такого как Noctua NA-SYC2, по крайней мере, возможность подключить лишь два вентилятора к одному разъему не навредит вашей материнской плате, если данные вентиляторы окажутся не самыми мощными.

Самым правильным решением будет являться покупка разветвителя с дополнительным питанием MOLEX. Типичным представителем такого разветвителя является GELID Solutions PWM (CA-PWM-03).

Также отличным решением будет покупка реобаса. Но если вы экономите на материнской плате, то вряд ли у вас найдется несколько тысяч рублей на реобас. Да и не каждый современный корпус предусматривает установку регулятора скорости вращения вентиляторов. Хотя, даже если в вашем корпусе не предусмотрен отсек 5,25″, существуют современные реобасы, которые рассчитаны под новые корпуса, но обойдутся вам такие решения существенно дороже. А с другой стороны, зачем отказывать себе в комфорте? Не проще ли купить одну качественную вещь, способную радовать вас долгие годы?

Читайте так же:
Регулировка замков деревянных окон

Запуск и настройка

Схема, собранная из исправных компонентов, должна заработать сразу. Нужно только помнить о настройке порога с помощью потенциометра P1 так, чтобы при комнатной температуре вентиляторы крутились медленно. Напряжение на вентиляторе при этом режиме составляет около 4 В и достигает 12 В для температуры 80 градусов, то есть при росте примерно на 60 градусов.

Зная необходимый диапазон изменения выходного напряжения и соответствующий ему диапазон изменения температуры можно вычислить коэффициент усиления ОУ U1B. Приведет это к изменению диапазона выходного напряжения, выраженное в милливольтах, а значит к изменению температуры от постоянного значения 2.3 mV/K. Тогда нужно будет с помощью потенциометра P1 всего лишь настроить такую точку работы, чтобы при комнатной температуре выходное напряжение было равно требуемому при расчете нижней границы.

Re: ШИМ-регулятор для CPU-Fan-а

Сообщение от DIP20

Я так и сделал на вентиляторы в корпусе ("выхлоп" и "вхлоп"), правда, по 100 ом.

Но при питании четырёхвыводного вентилятора (с PWM-входом) такие бяки:

— нет регулировки (скажем, на летнее время),
— датчик вращения должен питаться от нормального напряжения,
— такой вентилятор капризно работает на небольших оборотах (я пробовал FAN MATE, который у меня от прошлого Zalman-а остался). В районе 1200 rpm он просто может выключиться или резко очень упасть до

То есть PWM-вентилятор либо должен работаь просто от 12V, либо иметь полноценный PWM-сигнал на входе. Цена риска велика

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector